Biomedical Engineering for Global Health

Lecture 9 Vaccine development: from idea to product

Review of lecture 8

- Pathogens: Bacteria and Virus
- Levels of Immunity: •
 - Barriers → First line of defense
 - Innate → Inflammation
 - Phagocytes • Complement
 - Adaptive → Immunologic memory
 - · Antibody mediated immunity \rightarrow Extracellular pathogens
 - \cdot Cell mediated immunity \rightarrow Pathogens within cells
 - Diversity to recognize 100 million antigens

Review of lecture 8

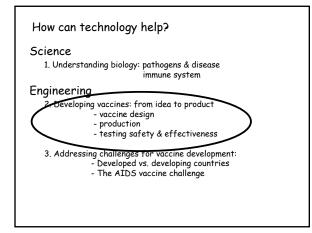
- · Infectious diseases are still a serious global health problem
 - Example of bacterial pathogen of public health relevance
 - Example of viral pathogen of public health relevance

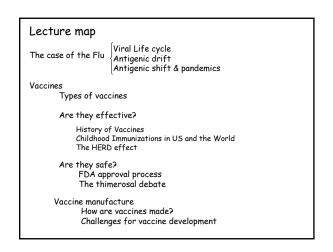
Review of lecture 8

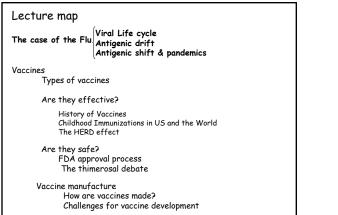
- There are 3 levels of immunity
 - Which are they?
 - Which cells in the blood mediate innate immune response?

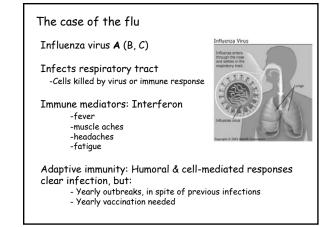
Review of lecture 8

- The adaptive immune response offers great advantage to vertebrates
 - What is adaptive immunity?
 - What is immunologic memory?


How can technology help?

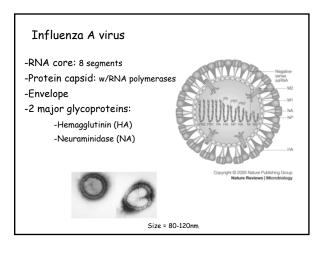

Science

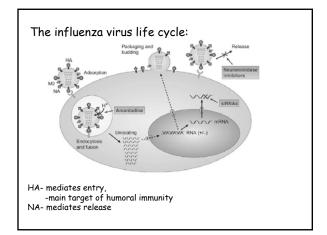

1. Understanding biology: pathogens & disease immune system

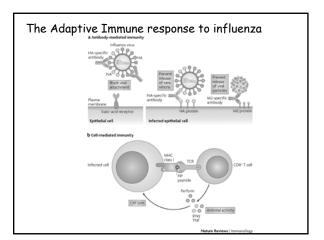

Engineering

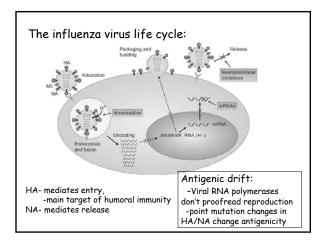
- 2. Developing vaccines: from idea to product vaccine design
 - production
 - testing safety & effectiveness
- 3. Addressing challenges for vaccine development: Developed vs. developing countries The AIDS vaccine challenge

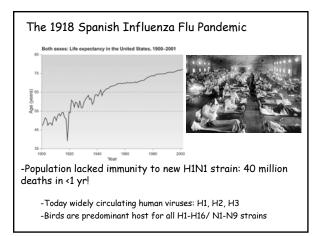
Influenza A Viral Spread

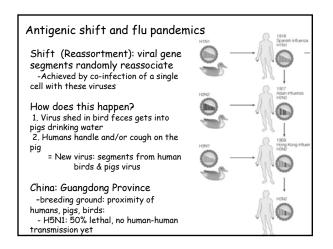

- Viral Spread - Infected person sneezes or coughs Avere Dandracy, Rochester and
- Micro-droplets containing viral particles inhaled by another person
- Penetrates epithelial cells lining respiratory tract

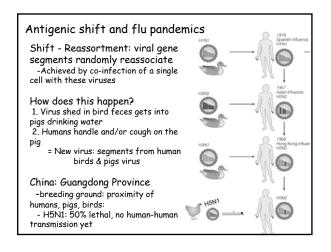

• Influenza kills cells that it infects

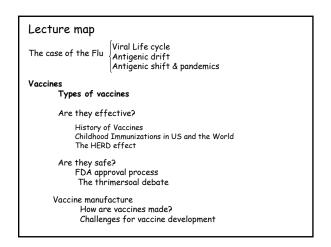

- Can only cause acute infections
- $\boldsymbol{\cdot}$ Cannot establish latent or chronic infections

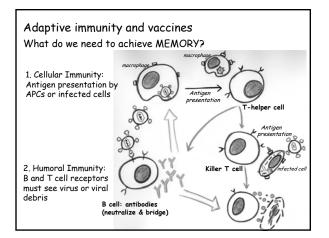

• How does it evade immune extintion?

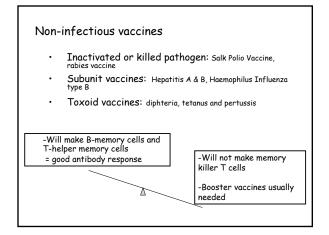

- Antigenic drift
 - Antigenic shift: reassortment

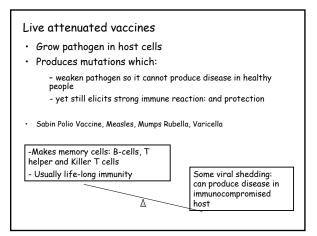


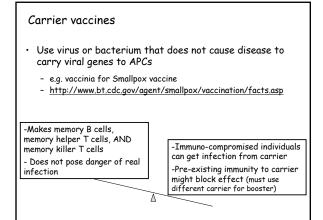






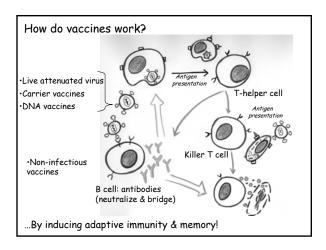






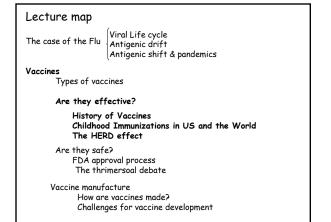
Types of vaccines

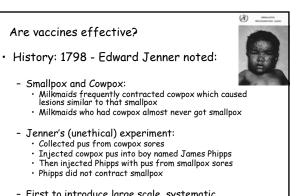
- Non-infectious vaccines
- Live attenuated vaccines
- Carrier vaccines
- DNA vaccines



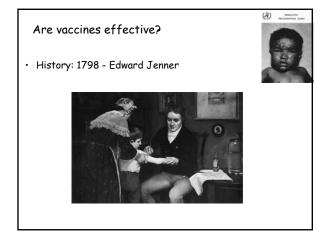
DNA vaccines

- DNA injections can transduce cells so antigens are expressed and presented.
- Reasons are not fully understood, but it can make memory B cells and memory T killer cells!
- · Make a DNA vaccine from a few viral genes
- No danger that it would cause infection




Types of vaccines

- Non-infectious vaccines
 - No danger of infection
 - Does not stimulate cell mediated immunity
 - Usually need booster vaccines
- Live, attenuated bacterial or viral vaccines
 Makes memory B cells, memory helper T cells, AND memory killer T cells
 - Usually provides life-long immunity
 - Can produce disease in immuno-compromised host


Carrier Vaccines

- Makes memory B cells, memory helper T cells, AND memory killer T cells
- Does not pose danger of real infection
- Immuno-compromised individuals can get infection from carrier
- DNA Vaccines

 First to introduce large scale, systematic immunization against smallpox

Are vaccines effective?

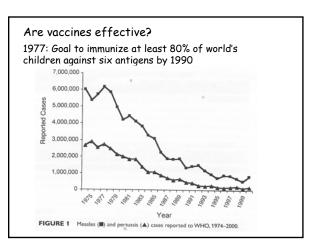
- 1885: Attenuated viral vaccine
 Louis Pasteur first vaccine against rabies
- Early 1900s: Toxoid vaccines - Diphtheria, tetanus
- 1936
 - Influenza
- 1950s: Tissue Culture-attenuated Poliovirus vaccine - Polio (Nobel Prize for Enders, Robbins, Weller)

• 1960s:

- Live attenuated: Measles, Mumps, Rubella (MMR) vaccines

Recommended In						OCTSO					UNITED S	TATES • 200
Vaccine▼ Age►	Birth	1 month	2 months	4 months	6 months	12 months	15 months	18 months	19–23 months	2-3 years	4-6 years	
Hepatitis B [']	HepB	He	рB	see footnote1		He	рB					
Rotavirus			Rota	Rota	Rota							Range of recommends
Diphtheria, Tetanus, Pertussis ³			DTaP	DTaP	DTeP	tootoote3	D	faP			DTaP	ages
Haemophilus influenzae type b [*]			НіЬ	Hib	Hib	н	ib					
Pneumococcal			PCV	PCV	PCV	PI	cv			Р	PV	Certain high-risk
Inactivated Poliovirus			IPV	IPV		17	v				IPV	groups
Influenza [®]					Influenza (Yearly)							
Measles, Mumps, Rubella ²						M	MR				MMR	
Varicella [®]						Vari	cella				Varicella	
Hepatitis A [®]							HepA	2 doses)	HepA	Series	
Meningococcal"										M	CV4	

Are vaccines effective?


Effects of vaccination in the US

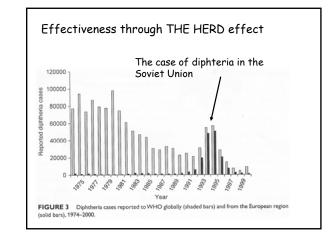
Disease	Max # of Cases	# Cases in 2000	% Decrease
Diphtheria	206,929 (1921)	2	-99.99
Measles	894,134 (1941)	63	-99.99
Mumps	152,209 (1968)	315	-99.80
Pertussis	265,269 (1952)	6,755	-97.73
Polio	21,269 (1952)	0	-100
Rubella	57,686 (1969)	152	-99.84
Tetanus	1,560 (1923)	26	-98.44
HiB	~20,000 (1984)	1,212	- 93.14
Hep B	26,611 (1985)	6,646	-75.03

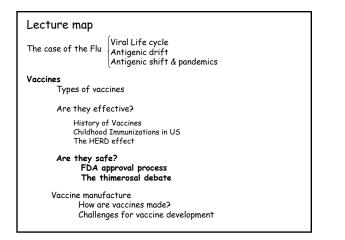
Are vaccines effective? Global effects of vaccination

- Smallpox
 First human disease eradicated from the face of the earth by a global immunization campaign
- 1974
 - Only 5% of the world's children received 6 vaccines recommended by WHO
- 1994
 - >80% of the world's children receive basic vaccines
 - Each year: 3 million lives saved

Effectiveness through THE HERD effect

 \cdot 1-2 out of every 20 immunized people will not develop and adequate immune response

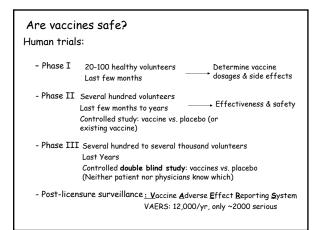

• Still,

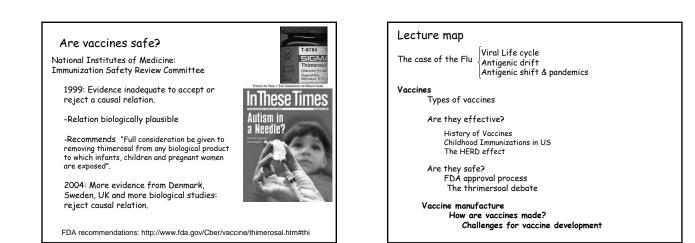

-Vaccinated people are much less likely to transmit a pathogen to others

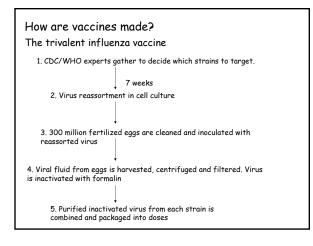
-So even people that are not vaccinated are protected

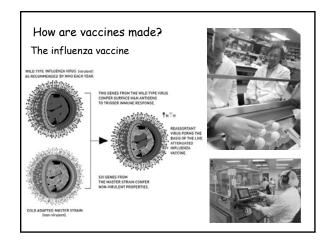
 $85\mathchar`-95\%$ of the community must be vaccinated to achieve herd immunity

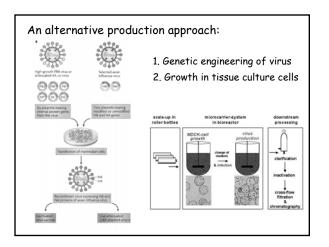
http://www.npr.org/templates/story/story.php?storyId=11226682

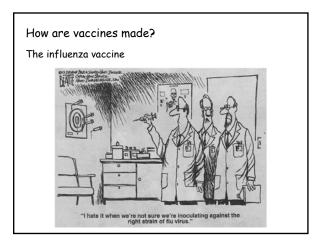

Are vaccines safe?


Testing safety and effectiveness


- Laboratory testing : Cell models Animal models


- Human trials: Phase I


Phase II Phase III Post-licensure surveillance



Challenges for vaccine development

-In the developed world

- Cost of development: facilities, regulations, litigation
- Market size : only given once, 57% bought by public sector
- Litigation costs: National Vaccine Injury Compensation Program

-In the developing world - Storage and transportation conditions

-UV protection

-The 'cold chain' / Freeze watch label -Syringe use

-Auto-disposable syringes eg. Solo-shot syringe

- -Needle free methods -Cost
 - -GAVI: Unicef, WHO, Gates, NGOs

How can technology help? The case of Smallpox

- One of world's deadliest diseases

 - Vaccine available in early 1800s Difficult to keep vaccine viable enough to deliver in developing world
- Elimination of smallpox
- 1950: stable, freeze dried vaccine
 - 1950: Goal → Eradicate smallpox from western hemisphere
 - 1967: Goal achieved except for Brazil
 - 1959: Goal → Eradicate smallpox from globe
 - Little progress made until 1967 when resources dedicated, 10-15 million cases per year at this time

- Strategies:

- » Vaccinate 80% of population
- » Surveillance and containment of outbreaks
- May 8, 1980: world certified as smallpox free!

Vaccines: what is still needed?

- The big three:
 - HIV
 - Malaria
 - Tuberculosis

Summary of lecture 9

- How do vaccines work?
 - Stimulate immunity without causing disease
- Different types of vaccines
 - Non-infectious vaccines
 - Live, attenuated bacterial or viral vaccines
 - Carrier Vaccines
 - DNA Vaccines
- Are vaccines effective?
- How are vaccines tested?
 - Lab/Animal testing
 - Phase I-III human testing
 - Post-licensure surveillance

For next time, 2/12/2008:

-Read: The Vaccine by Michael Specter.

It can be found on Michael Specter's website through the following link:

http://www.michaelspecter.com/ny/index.html